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ABSTRACT

Based on the collected multiwavelength data, we perform a cluster analysis for the blazars of the Roma-BZCAT
catalog, selecting groups of blazars with similar properties. Using machine learning methods, we constructed an
independent classification of the blazars and compared it with the known Roma-BZCAT classification. The clustering
algorithms divide both BL Lac-type objects and flat-spectrum radio quasars (FSRQs) into two subclasses along with
a separate group of mixed BL Lacs and FSRQs. The clustering did not reveal difference between the BL Lacs and
galaxy-dominated BL Lacs, unlike in the Roma-BZCAT classification.
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1 Introduction

Development of astronomical instrumentation and data gath-
ering techniques has been providing nowadays an over-
whelming amount of observational data of different kinds:
from large samples of point estimates for hundreds of char-
acteristics to complex data such as images, spectra, or time
series. Fortunately, along with this growing amount of infor-
mation we witness the growing computational power and the
development of sophisticated data analysis techniques based
on machine learning methods.

In this paper we touch on a relatively simple case of
investigation of multiparametric tabular data using cluster
analysis, or clustering, a technique of unsupervised learning
aimed at obtaining the most general properties of a dataset
of some objects described by their characteristics. In our
case we analyze the Roma-BZCAT catalog (Massaro et al.,
2015) of blazars, complemented with observed data from
other point-source catalogs.

We divide the blazars into five classes based on their mul-
tifrequency properties, show some preliminary results, and
compare our classes with the Roma-BZCAT classification.
Two clustering algorithms are implemented and compared.
We also briefly consider the problem of imputing the missing
measurements in the dataset.

The code with the implementation of some stages of this
project is available in Jupiter notebooks on GitHub.1 The web
page also contains links to the used data sources, described

1 https://github.com/DKudryavtsev/BZCAT-Clustering

further in Sect. 3, and a number of Python scripts used to
collect the data.

2 The technique of cluster analysis

The basic idea of cluster analysis is that similar objects have
similar numerical characteristics, which allows one to com-
bine them in groups (clusters) based on some measure of
their similarity and then investigate their statistical proper-
ties, which could give some insights into their nature.

Having the objects and their characteristics (features), we
thus determine a feature space of dimension 𝑀 , where 𝑀 is
the number of features. Each object is described in this space
by a vector x𝑛, where indices 𝑛 range in a closed interval
from 1 to 𝑁 , 𝑛 = [1, 𝑁], and 𝑁 is the number of objects. In
our case the measure of similarity between any two vectors
x𝑖 and x 𝑗 could be the Euclidean distance:

𝑑 = |x𝑖 − x 𝑗 |. (1)
Now, if we describe our dataset as a set (or matrix) {𝑋} ∈ R
of dimension 𝑁 × 𝑀 and assign the clusters as a set
{𝑌 } ∈ Z of cardinality 𝐾 , where 𝐾 is the number of clusters,
{𝑌 } = [1, 𝐾], then the solution of the clustering problem is
finding an algorithmic function 𝑎: {𝑋} → {𝑌 } that assigns a
singular label 𝑦𝑘 , 𝑘 = [1, 𝐾] to each object x𝑛, 𝑛 = [1, 𝑁]
in such a way that the objects with similar properties (closer
distances 𝑑) correspond to the same label (cluster).

Ideally, these clusters of similar objects could form local-
ized groups in the feature space, but this is not always true,
and especially in our case of blazars, which are by themselves
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are a very particular group of AGNs distinctive by a specific
peculiarity: the orientation of the jet toward the observer.

In general, the clustering algorithm builds an independent
unsupervised classification that is based almost solely on
the multiple properties of the objects under consideration.
The method, nevertheless, have its own hyperparameters (the
parameters that are set by the researcher rather than learned
by the model from data):

– the feature space, which determines the characteristics
relevant for the scientific scope of the problem;

– the algorithm implemented to find the clusters, usually
several algorithms are selected based on the data distri-
bution and then evaluated from internal clustering met-
rics (e.g., the silhouette coefficient, Calinski–Harabasz
index, and Davies–Bouldin index; Caliński, Harabasz,
1974; Davies, Bouldin, 1979; Rousseeuw, 1987);

– the number of clusters, a trade-off between uniformity
and individuality, which to a certain degree can also
be evaluated from metrics (look for, e.g., the “elbow”
method).

3 The dataset and feature space

The original dataset, which is going to be published in a
separate paper currently in preparation, is based on the Roma-
BZCAT catalog (Massaro et al., 2015) and complemented
with multifrequency data from various other catalogs. The
total number of collected characteristics is over one hundred.

For the feature space we tried to take the maximum num-
ber of characteristics related to the physical properties of the
objects. Leaving the detailed description of feature selec-
tion and transformations, let us go directly to the result. For
modeling we chose:

– flux densities:
• radio range represented by the Roma-BZCAT

1.4 GHz data (NVSS, FIRST) and by the CATS
database2 (Verkhodanov et al., 1997, 2005) and
BLcat RATAN-6003 (Mingaliev et al., 2014; Sot-
nikova et al., 2022) measurements at 4.7 GHz;

• IR range from WISE4 W1–W4;
• optical range from Pan-STARRS5 𝑔𝑟𝑖𝑧𝑦;
• UV range from GALEX6 FUV and NUV;
• X-rays from the Roma-BZCAT 0.1–2.4 keV data

(ROSAT, Swift-XRT);
– a set of “hardnesses:”

• radio-to-optical spectral index from Roma-BZCAT;
• radio–IR, log10 (𝜈𝐹1.4GHz / 𝜈𝐹W2);
• radio–UV, log10 (𝜈𝐹1.4GHz / 𝜈𝐹NUV);
• radio–X, log10 (𝜈𝐹1.4GHz / 𝜈𝐹X);
• IR–opt, log10 (𝜈𝐹W2 / 𝜈𝐹𝑖);
• IR–UV, log10 (𝜈𝐹W2 / 𝜈𝐹NUV);
• IR–X, log10 (𝜈𝐹W2 / 𝜈𝐹X);

2 https://www.sao.ru/cats/
3 https://www.sao.ru/blcat/
4 https://irsa.ipac.caltech.edu
5 https://outerspace.stsci.edu/display/PANSTARRS/
6 https://archive.stsci.edu/missions-and-data/galex

– monochromatic (4.7 GHz) radio luminosity corrected
for the redshift 𝑧 (transformed to the rest frame):

𝐿4.7 = 4𝜋𝐷2
𝐿𝑆4.7 (1 + 𝑧)−𝛼−1, (2)

where 𝐷𝐿 is the luminosity distance, 𝑆4.7 is the flux
density, and 𝛼 is the radio spectral index defined as

𝛼 =
log 𝐹2 − log 𝐹1
log 𝜈2 − log 𝜈1

, (3)

where 𝐹1 and 𝐹2 are the flux densities at frequencies 𝜈1
and 𝜈2, respectively. Here the frequencies were 4.7 and
11.2 GHz or, where the measurements were absent, 4.7
and 7.7 GHz;

– frequency of the synchrotron peak determined by poly-
nomial fitting7 of the spectral energy distributions
(SEDs) derived from the SED Builder8 tool of the Italian
Space Agency Space Science Data Center;

– spectrum slopes in the WISE and Pan-STARRS ranges
calculated from linear regression; these values replace in
our case the optical colors, providing rougher but more
robust estimates of the SED;

– comoving distance calculated from the ΛCDM cosmol-
ogy with the Planck parameters (Planck Collaboration
et al., 2020).
Among these 25 characteristics, 13 features are the flux

densities in different ranges of the electromagnetic spectrum:
from radio to X-rays. The ratios between different kinds of
electromagnetic radiation is already described in our dataset
by the hardness parameters, so these flux densities are redun-
dant and even adverse for the clustering algorithms due to the
so-called “curse of dimensionality”. As a first step of dimen-
sionality reduction, we convolved them into two metafeatures
characterizing flux densities in the radio and shorter wave-
lengths. The choice of these two metafeatures is based on the
simple core–jet model of AGNs. In this model the radio emis-
sion is unambiguously related to the synchrotron radiation
from the jet, while emission in other electromagnetic ranges
can be generated by both the core regions and the jet (via its
synchrotron radiation and inverse Compton scattering). The
model is confirmed by the correlations observed in our data:
while the radio emission is not correlated with the emission
in other ranges (Kendall’s 𝜏 ≤ 0.1), we can see weak correla-
tions for the X-rays relative to the UV, optical, and IR ranges
(𝜏 = 0.1–0.3) and notable correlations between flux densities
in the UV, optical, and IR ranges (𝜏 = 0.3–0.7). Obviously,
the correlations between flux densities of the same kind (e.g.,
between the optical 𝑔𝑟𝑖𝑧𝑦 bands) are very strong (𝜏 >0.7).

The two metafeatures were obtained as the PCA9 first
principal components for each of the ranges (radio and shorter
wavelengths). After that, the resulting model dataset used for
the clustering comprised 14 features, forming correspond-
ingly a 14D feature space.

We should notice that this feature space is subjected to
some effects that are negative for interpretation of the re-
sults that could be obtained from the clustering. In the first
place, all selection effects are preserved, and almost all char-
acteristics are dependent on the distance to the blazars (or

7 https://github.com/DKudryavtsev/BZCAT-SED-Viewer
8 https://tools.ssdc.asi.it/SED/
9 Principal component analysis
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redshift 𝑧). For example, the redshift-corrected radio lumi-
nosity nevertheless shows strong dependence on 𝑧 due to
the Malmquist effect. Even the flux density ratios are depen-
dent on the distance because of the cosmological rest frame
drift, which could not be corrected due to the absence of an
accurate SED model for each of the blazars. At the same
time, these effects can be considered useful for the clustering
because they could potentially help separate classes that nat-
urally demonstrate different distance distributions (because
of the selection in the data or not). It is for this reason that
we leave the comoving distance and raw flux densities as
model characteristics. This dependence on distance must be
kept in mind during further analysis of the obtained groups.
The second nuisance is the fact that blazars are variable,
therefore in some cases the characteristics may be measured
in different states of blazar activity (active/quiescent). This
restricts our results to only the groups’ statistical properties.
Finally, the BZCAT catalog is not a complete flux-limited list
of blazars, but it is the largest collection of the well-known
blazars selected using experimental data from different sur-
veys in a wide wavelength range from radio to gamma-rays,
hence containing a large amount of various data crucial for
performing our task. The incompleteness of the blazar sam-
ple does not affect the main objective of this study, tests of
clustering algorithms, and the analysis of the observed differ-

ences; however, it could influence the distribution of blazars
within the clusters, i.e., the population of certain groups (bor-
ders of the clusters in the feature space) may change for a more
complete sample.

4 Clustering

There are a lot of approaches to the clustering problem. As
for the tabular data, many of them are implemented in the
Python machine learning library scikit-learn (Pedregosa
et al., 2011). The choice of the particular algorithm is de-
pendent on data distribution and found by trial and error. We
tested several algorithms, evaluating the results by internal
clustering metrics, and found that a combination of PCA di-
mensionality reduction with k-means (Arthur, Vassilvitskii,
2007) provided the best result in terms of cluster separa-
tion. The PCA+k-means results have been controlled using
the second, non-linear, approach: Kohonen’s Self-Organizing
Maps (SOMs, Kohonen, 2001), which are based on a neural
network with competitive learning. In this paper we used the
Somoclu implementation of SOMs (Wittek et al., 2017).

In the PCA+k-means approach, we first transform the data
into a new coordinate system where the principal components
(directions representing the maximum variance in the feature
space) constitute an orthonormal basis. After that, we can
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Fig. 1. Comparison of the PCA+k-means (left) and SOM (right) clustering. The coordinates are the conditional 2D t-SNE coordinates (top)
and the output map of the SOM method (bottom). The points are the blazars colorized according to their cluster membership.
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Fig. 2. Differences in typical SED shapes between clusters (rest frame frequencies). For each cluster, several tens of randomly selected
spectra are plotted. We connect individual measurements with colored dashed lines to better visualize spectrum shapes. The frequency range
is from radio waves (lower abscissa values) to gamma-ray radiation; the WISE (IR) and Pan-STARRS (optical) regions are designated with
the vertical dotted lines. The SEDs in cluster 4 are very similar to those in cluster 3, therefore we have omitted them here to save the space.

drop out the axes with the least variances, thus reducing the
dimensionality while preserving most of the information (the
remaining “explained” variance). Here we chose the 90%
threshold for the explained variance and reduced our 14D
feature space to 6D. The final stage was k-means clustering.
The number of clusters was chosen to be five, as this number
gave the best results for the model with imputed missing
measurements (see the next section).

In the SOM method, we have a neural network of two
fully connected layers. The input layer corresponds to the di-
mensionality of the object vector (14D), and the second layer
is organized in a grid of 200× 320 neurons. During training,
the input vectors are sequentially fed to the network and the
neuron with the best-matching weights is determined. After
that, the weights of this neuron and its neighboring neurons
are adjusted so that to become closer to the input vector, the
value of the adjustment is dependent on the learning rate and
the distance from the best-matching neuron on the layer grid.
As a result, the distribution of the neuron weight vectors in
the feature space gradually becomes close to the data dis-
tribution, while the neurons remain structured in a 2D-grid
fashion. Thus, after training the network we have an ordered
2D structure of neurons with the high-dimensional topology
encoded in their 14D weights. The final step is also k-means,
but in this case we make it using the 14D weights of the
trained neurons and then labeling the objects according to
the cluster label of their nearest neuron. The advantage of

this method over the PCA dimensionality reduction is that it
can restore possible nonlinearities in data distribution, while
the PCA is a more straightforward and interpretable method
of linear algebra.

The results obtained using both methods and their com-
parison are shown in Fig. 1. We use two coordinate systems:
the obtained self-organized map at the bottom of the figure
and the conditional 2D coordinates derived using the t-SNE
method (van der Maaten, Hinton, 2008), a nonlinear trans-
formation based on matching specific distance-based proba-
bility distributions in the high-dimensional feature space and
in some lower-dimensional space, here it is our 2D plane.

Both methods expectedly show that there are no local-
ized groups of blazars, except for cluster 0, which looks
outstanding to a certain degree in the t-SNE coordinates, but
nevertheless have no clear separation from the overall cloud.
A somewhat surprising result, though, is that both methods
construct almost the same borders between the clusters, de-
spite of the certainly continuous distribution of data in the
feature space. The Rand index between the two clusterings is
0.92, which means that the results are 92% similar. This also
proves that there are no nonlinearities in the data distribution,
which could not be taken into account by the PCA+k-means
method. Thus, PCA+k-means has been used for further anal-
ysis as a more straightforward approach.

By estimating the influence of each of the 14 features on
the first two primary components (PCA biplot), we can also
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Fig. 3. Cross identification with the Roma-BZCAT classes.

evaluate their contribution to the final result. The estimates
obtained show that most features contribute with similar per-
centage of 6–8% (taking the total as 100%), with the lowest
contribution of 2.6% from the synchrotron peak frequency
and the highest contribution of ∼11% from the IR-to-UV
hardness parameter.

5 Imputation of missing measurements

Our model dataset has a fairly great number of missing mea-
surements. We made two clusterings: (1) with dropping all
missing measurements, which shortened the catalog to 858
objects (24% of the whole sample) and (2) by imputing the
missing measurement using several methods. By comparing
the two clusterings, we settled on probabilistic PCA (pPCA,
Tipping, Bishop, 1999) as the best choice of imputation with
a Rand index of 0.89. The optimization of this index was
also used as the choice for the number of clusters. The pPCA
implementation10 from Porta et al. (2005) has been adopted.
A more detailed description will be given in further papers.

6 Preliminary results

The obtained blazar clusters demonstrate differing feature
distributions, which is a subject of further investigation be-
yond the scope of this paper. Here we only demonstrate the
most general result concerning the SED shapes (Fig. 2) and
make a comparison with the existing blazar classification
(Fig. 3).

The cross identification with the Roma-BZCAT blazars
(Fig. 3) shows that in general the algorithms have di-
vided BL Lac-type objects and flat-spectrum radio quasars
(FSRQs) into two subclasses: clusters 0 and 1 and clusters 3
and 4, respectively. The “intermediate” cluster 3 contains
both BL Lacs and FSRQs. The clustering has not revealed dif-
ference between the BL Lacs and galaxy-dominated BL Lacs
(the sources usually reported as BL Lacs in the literature,
but having SEDs with significant dominance of the galaxian

10 https://github.com/el-hult/pyppca

emission over the nuclear one, Massaro et al., 2015), unlike
in the Roma-BZCAT classification. It should be noticed that
we did not aim anyhow to recreate the original classification
of Roma-BZCAT, neither the algorithms “knew” about the
existing classes (it would have given a trivial division).

Samples of SEDs in Fig. 2 demonstrate notable differ-
ences between the clusters. In the most distinct cluster 0,
populated by BL Lac-type blazars, the synchrotron “hump”
is almost unobservable. It is worth noting that all high syn-
chrotron peakers are the members of this cluster. Cluster 1,
also populated with BL Lacs, demonstrates distinctly differ-
ent shapes with clear synchrotron maxima in the IR–optical
range. Cluster 2, a mix of BL Lacs and FSRQs, has SEDs
with synchrotron maxima shifted to lower frequencies com-
pared to cluster 1. Blazars of this cluster have also a powerful
second hump in the gamma-ray range. Interestingly, gamma-
ray fluxes have not been represented in the clustering feature
space due to their sparse measurements in Roma-BZCAT;
the algorithms separated this cluster using other features.
The SEDs in clusters 3 and 4, populated with FSRQs, are
pretty similar with each other (we show only cluster 3 in the
figure). It is not clearly seen on the broad frequency range
but these SEDs have a specific peculiarity in their shape: an
additional growth of flux densities in the optical–near-UV
range, probably caused by the light from the host galaxies.

The presented effects are not subjected to the above men-
tioned dependence of dataset characteristics on the redshift,
as the frequencies in Fig. 2 have been recalculated to the rest
frame.

7 Conclusions

– The paper is devoted to the application of the cluster
analysis technique to multiparametric astrophysical data:
compiled characteristics of the Roma-BZCAT blazars.
Similar methods can be applied to an arbitrary tabular
dataset.

– A comparison of two clustering algorithms has been
carried out. We have reached a coincidence of ∼90%.
We should notice, nevertheless, that because no local-
ized groups are revealed in the feature space and due to

https://github.com/el-hult/pyppca
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the incompletness of the Roma-BZCAT catalog, the bor-
ders between the clusters are only conditional and might
change for a more complete sample.

– An independent classification of the Roma-BZCAT
blazars has been developed based on the analysis of their
multifrequency (radio-to-X-ray) observations. Noticable
differences in the SEDs of the derived classes are ob-
served.

– There exists certain correlation with the original Roma-
BZCAT classification.
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