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ABSTRACT

We perform an analysis of the magnetohydrodynamic (MHD) equilibrium of force-free magnetic flux ropes taking
into account boundary conditions. It was shown that the use of the generating function to solve the MHD equilibrium
equation of a force-free flux rope can lead to incorrect conclusions. The continuity condition of the tangential component
of the electric field on the boundary surface in the ideal magnetohydrodynamics approximation is always satisfied and
does not require separate consideration.
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1 Introduction

Magnetic flux tubes (ropes) are one of the most important
issues in cosmic magnetohydrodynamics (MHD). These are
structures of cylindrical shape, with basic parameters (tem-
perature, plasma density, magnetic field strength, and direc-
tion) being sharply changed in the vicinity of a hypothetical
boundary. In particular, they are closely related to the MHD
dynamo theory, as the buoyancy force is believed to be re-
sponsible for the emergence of a new magnetic flux from
the convective zone onto the surface of the Sun and stars.
These tubes can play a significant role in the process of star
formation as well as solar and stellar activity.

The significance of studying solar coronal loops cannot
be overestimated due to their relation with coronal heating,
solar wind, flares, and coronal mass ejections. Therefore, it
is not surprising that a large number of studies are dedicated
to their exploration (see, e.g., Reale, 2014). Since these mag-
netic structures have quite sharp lateral boundaries, the issue
on boundary conditions describing the linkage of magnetic
tube parameters (often neglecting loop curvature) on different
sides of the boundary is crucial when considering their MHD
equilibrium. These conditions are commonly reduced to the
equality of total pressure, and in the case of the perturbed
boundary, to the equality of transverse velocity components
on its inner and outer surfaces. Note that this approach is
widely used in describing MHD phenomena not only in con-
ditions of solar (Bennett et al., 1999; Carter, Erdélyi, 2008;
Erdélyi, Fedun, 2010; Zaqarashvili et al., 2010, 2014; Ruder-
man, Terradas, 2015) but also laboratory plasma (Goedbloed,
Poedts, 2004).

In the first case, the sharp boundary approximation nat-
urally arises from the condition of high plasma conductivity
and, consequently, a small thickness of the diffusion bound-

ary layer formed as a result of the “blurring” of the magnetic
field in the plasma. This narrow layer can play an extremely
important role both in the MHD equilibrium of flux ropes and
in satisfying the continuity condition of the tangential com-
ponent of the magnetic field (Tsap, Shakhovskaya, 2000).

Solov’ev, Kirichek (2021) recently noted that in the pa-
per of Tsap et al. (2020), dedicated to the MHD stability of a
shielded (external azimuthal magnetic field 𝐵𝜑𝑒 (𝑟 > 𝑎) = 0,
where 𝑎 is the cross-section radius) force-free flux rope, the
adopted model is not well justified. This follows from the
continuity of the tangential component of the electric field
E𝜏 , implying that, according to Solov’ev, Kirichek (2021),
a jump in the electric current at the boundary is impossible.
Additionally, based on the solutions of the MHD equilib-
rium equation provided by the generating function, Solov’ev,
Kirichek (2021) concluded that at the characteristic distance
𝑟0 from the flux rope axis, a singular magnetic surface may
form, where the current density 𝑗 and the force-free field pa-
rameter 𝛼 values grow infinitely, along with discontinuities
in the derivatives 𝜕 𝑗/𝜕𝑟 and 𝜕𝛼/𝜕𝑟.

Despite we have no doubt that the continuity condi-
tion of the tangential component of the electric field at the
tube boundary should be satisfied (Landau, Lifshitz, 1966),
we cannot agree with the conclusions drawn by Solov’ev,
Kirichek (2021). In our opinion, the authors did not take into
account several circumstances that will be considered below.

2 Force-free magnetic flux rope with a sharp
boundary

By using the cylindrical coordinate system (𝑟, 𝜑, 𝑧) and sub-
scripts 𝑖 and 𝑒 for internal and external parameters, we per-
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form an analysis of the MHD equilibrium of a straight ax-
isymmetric flux rope with a magnetic field (see Fig. 1):

B =

{
(0, 𝐵𝜑𝑖 (𝑟), 𝐵𝑧𝑖 (𝑟)), 𝑟 ⩽ 𝑎;
(0, 𝐵𝜑𝑒 (𝑟), 𝐵𝑧𝑒 (𝑟)), 𝑟 > 𝑎.

(1)

Fig. 1. Schematic representation of a magnetic flux rope.

As follows from expression (1), we consider the cylinder
boundary as an MHD discontinuity. This approach allows
one to significantly simplify the study of equilibrium mag-
netic configurations. Therefore, it is not surprising that model
(1) is widely used by many authors (Bennett et al., 1999;
Carter, Erdélyi, 2008; Erdélyi, Fedun, 2010; Zaqarashvili et
al., 2010, 2014; Ruderman, Terradas, 2015) primarily for so-
lar coronal flux ropes. Meanwhile, Solov’ev, Kirichek (2021)
concluded on the insufficient justification of the model for a
shielded magnetic flux rope (𝐵𝜑𝑒 (𝑟 > 𝑎) = 0) as well as for a
laboratory pinch (𝐵𝜑𝑒 (𝑟 > 𝑎) ∝ 1/𝑟) with a sharp boundary
due to the discontinuity in the tangential component of the
electric field E𝜏 , implying that additional analysis should be
carried out. Besides, Solov’ev, Kirichek (2021) pointed out
the existence of special magnetic surfaces inside the equi-
librium flux rope. To better understand the issue, let us gain
insights into the mentioned reasonings.

Solov’ev, Kirichek (2021) obtained the dependences of
the magnetic field components 𝐵𝑧 (𝑟) and 𝐵𝜑 (𝑟) on the cross-
section radius 𝑟 of a straight axisymmetric force-free mag-
netic flux rope using the MHD equilibrium equation

𝑑

𝑑𝑟

(
𝐵2
𝑧 + 𝐵2

𝜑

8𝜋

)
+

𝐵2
𝜑

4𝜋𝑟
= 0. (2)

The solution of equation (2) was found with the generat-
ing function

𝐹 (𝑟) = 𝐵2
𝑧 (𝑟) + 𝐵2

𝜑 (𝑟).

The function 𝐹 (𝑟) allows expressing the magnetic field com-
ponents as follows:

𝐵𝑧 (𝑟) =
√︁
𝐹 + (𝑟/2)𝑑𝐹/𝑑𝑟, 𝐵𝜑 (𝑟) =

√︁
−(𝑟/2)𝑑𝐹/𝑑𝑟.

Thus, by selecting the function 𝐹 (𝑟), taking into account the
boundary conditions, we can determine 𝐵𝑧 (𝑟) and 𝐵𝜑 (𝑟).

Constructing 𝐹 (𝑟) is based on Ampere’s law, which can
be represented as

∇ × B =
4𝜋
𝑐

j . (3)

Integrating equation (3), for the azimuthal component of the
magnetic field 𝐵𝜑 of a straight axisymmetric flux rope, we
have ∮

𝐵𝜑𝑑𝑟 =
2
𝑐

∫
𝑗𝑧𝑑Σ =

2𝐼𝑧
𝑐

, (4)

where Σ is the cross-section of a flux rope. Equation (4) im-
plies that the total longitudinal electric current 𝐼𝑧 = 0 for a
shielded magnetic flux rope (this case corresponds to neu-
tralized current in the photosphere). Therefore, the current 𝑗𝑧
must change its direction into opposite at some distance from
the tube axis, and the azimuthal component of the magnetic
field in the external region 𝐵𝜑 (𝑟 > 𝑎) = 0.

Taking into account all the mentioned above, Solov’ev,
Kirichek (2021) defined the generating function as follows:

𝐹 (𝑟) = 𝐵2
0 [𝐺 + (1 − 𝐺) 𝑓 (𝑟)], 𝐺 =

𝐵2
𝑧𝑒

𝐵2
0
, (5)

where 𝐵0 is the magnetic field on the flux rope axis, 𝑓 (𝑟)
is a certain continuous dimensionless decreasing function
describing the distribution of the equilibrium magnetic field
inside a flux rope. Note that the radius of the shielded flux
rope 𝑎 was determined as

𝐹 (𝑎) = 𝐵2
𝑧𝑒, (6)

i.e., by the point 𝑟 = 𝑎 at which 𝐵𝜑 (𝑎) = 0. Condition (6),
according to equation (5), implies that 𝑓 (𝑎) = 0, although
the functions 𝑓 (𝑟) invoked by Solov’ev, Kirichek (2021) tend
to zero only asymptotically (e.g., ( 𝑓 (𝑟) = exp(−𝑘2𝑟2)). This
means that the radius of the magnetic flux rope 𝑎 is not
defined since it can be considered infinitely large. Conse-
quently, the shielding region of a flux rope is also formally
unlimited (see also Solov’ev, 2022). The approach used by
the authors is explained by their aim to avoid approximat-
ing a sharp boundary of “plasma – plasma”, which, in their
opinion, violates the continuity condition of the tangential
component of the magnetic field E𝜏 .

In our view, it would be more reasonable to identify the
characteristic radius of the flux rope 𝑎 with the boundary
layer thickness Δ𝑟 , where the most abrupt changes in the
main parameters of the flux rope occur, including the electric
current 𝑗 and the parameter 𝛼. In this case, ifΔ𝑟/𝑎 → 0, then
such a boundary region is reduced to the boundary lateral sur-
face, which can be considered as an MHD discontinuity, thus
avoiding the appearance of any peculiarities and inconsisten-
cies in solving the MHD equilibrium equation (2). However,
in general, Δ𝑟 can vary within wide ranges.

We believe that under the correct statement of the prob-
lem, there should be no special (singular) magnetic surfaces
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Fig. 2. Dependence of the equilibrium values of the magnetic field components 𝐵𝑧 and 𝐵𝜑 , the electric current density 𝑗𝑧 and 𝑗𝜑 , and the
force-free parameter 𝛼 on the relative cross-sectional radius 𝑟/𝑎 at 𝜅 = 100 (left panel) and 𝜅 = 1000 (right panel). The “gap” in the values
of 𝑗𝑧 , 𝑗𝜑 and 𝛼 around 𝑟/𝑎 = 1 corresponds to the boundary region.

appearing both inside the flux rope and at the boundary. In-
deed, from equation (3) for the components of the electric
current density, we have

𝑗𝑧 =
𝑐

4𝜋
1
𝑟

𝜕 (𝑟𝐵𝜑)
𝜕𝑟

, 𝑗𝜑 = − 𝑐

4𝜋
𝜕𝐵𝑧

𝜕𝑟
. (7)

For simplicity, taking the azimuthal magnetic field

𝐵𝜑 =
𝑟/𝑎

1 + (𝑟/𝑎)𝜅 , (8)

where 𝜅 = const, from equations (2), (7), and (8) we find

𝐵𝑧 (𝑟)
𝐵𝑧 (0)

=
√

2

(
1
2
−

𝐵2
𝜑 (𝑟)

2𝐵2
𝑧 (0)

− 1
𝐵2
𝑧 (0)

∫ 𝑟

0

𝐵2
𝜑 (𝑟)
𝑟

𝑑𝑟

)1/2

.

In this case the dimensionless parameter

𝛼 =
𝑗𝑧

𝐵𝑧

=
𝑗𝜑

𝐵𝜑

. (9)

The results of our numerical calculations of the magnetic
field components 𝐵𝑧 and 𝐵𝜑 , the electric current density
𝑗𝑧 and 𝑗𝜑 , as well as the parameter 𝛼 in arbitrary units at
𝜅 = 100 and 𝜅 = 1000 are shown in Fig. 2. As expected, no
peculiarities for 𝑗 and 𝛼 are found, at least in the boundary
region (𝑟 = 𝑎) implying a discontinuity, although the charac-
teristic relative thickness of the boundary layer Δ𝑟/𝑎 → 0,
and 𝑗 and 𝛼 can reach arbitrarily large but finite values. From
this trivial but illustrative example, it follows that the approx-
imation of a sharp boundary to describe MHD equilibrium
or the stability of a force-free magnetic flux rope is a fairly
acceptable simplification. In the proposed model, unlike that
in Solov’ev, Kirichek (2021), no special magnetic surfaces
arise.

According to Solov’ev, Kirichek (2021), model (1) vio-
lates the continuity of the tangential component of the elec-
tric field E𝜏 at the boundary. Meanwhile, in general case,
the continuity of the component E∗

𝜏 for a boundary moving

with velocity v can be expressed as in (Sommerfeld, 1949;
Landau, Lifshitz, 1966; Miyamoto, 2000):

⟨(n × E∗)⟩ = E∗
𝜏𝑒 − E∗

𝜏𝑖 = 0, (10)
where n is the unit normal to the interface, and the electric
field

E∗ = E + 1
𝑐
(v × B). (11)

Since within ideal MHD

E∗ = E + 1
𝑐
(v × B) ≈ 0, (12)

equation (10) is automatically satisfied, and the question of
the continuity of the tangential component of the electric
field E∗

𝜏 within ideal plasma does not arise.
It is important to emphasize that the consideration of the

plasma velocity v for force-free magnetic flux ropes has a pro-
found physical significance, which was first noted by Alfvén
(see, e.g., Alfvén, Fälthammar, 1967). Under the action of
the electric field, the electron and ion drifts occur toward the
rope axis at the speed

v =
𝑐

𝐵2 [E × B] .

On the other hand, taking into account equation (11), in a
moving coordinate system, the electric field

E∗ = E + 1
𝑐
(v × B) = E + B

𝐵
(EB) − E = E∥ .

It follows that only through the drift motion of the plasma,
the formation of force-free magnetic structures in the solar
corona becomes possible.

3 Discussion of results and conclusions

We have shown that the conclusion in Solov’ev, Kirichek
(2021) on the possibility of forming special magnetic sur-
faces implying the presence of singularity for the electric
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current density and the parameter 𝛼 inside equilibrium mag-
netic flux ropes, can hardly be considered convincing. In our
view, this is due to an unsuccessful choice of the generat-
ing function 𝐹 (𝑟), i.e., the solution to the MHD equilibrium
equation (see also Solov’ev, 2022). Note that the approach
used by the authors implies the flux rope radius 𝑎 → ∞
and, consequently, an infinitely large shielding region. There-
fore, in this study, we have linked the characteristic flux rope
boundary 𝑎 to a thin layer where the magnetic field, electric
current, and parameter 𝛼 change quite abruptly.

As indicated by the obtained results, in the ideal MHD
approximation, the continuity of the tangential component
of the electric field 𝐸∗ is automatically satisfied, as 𝐸∗ ≈ 0.
Hence, it is obvious that when setting boundary conditions
for the “plasma – plasma” discontinuity, this requirement is
not usually taken into account since it “drops out”. A detailed
examination of the case associated with the consideration of
finite electrical plasma conductivity implies the possibility
of separating electric charges at the boundary surface, which
is beyond the scope of this paper. However, as can be easily
shown, in the case of high but finite electrical conductivity,
the use of more general approaches is in good agreement with
the equations of ideal MHD (Tsap, Shakhovskaya, 2000).

Thus, the models of laboratory pinches or the shielded
magnetic flux rope can be used to describe MHD equilibrium
and stability in the solar and stellar coronae, significantly
simplifying model calculations (Tsap et al., 2020, 2022).
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