Open Access Online Journal on Astronomy and Astrophysics

Acta Astrophysica Taurica

www.astrophysicatauricum.org

Acta Astrophys. Tau. 5(3), 1-5 (2024)

Scattering properties of spherical ice particles

D.V. Petrov, E.A. Zhuzhulina

Crimean Astrophysical Observatory, Nauchny 298409
e-mail: dvp@craocrimea.ru

Received 27 October 2021

ABSTRACT

Water ice is widespread in the Solar system. The sizes of water ice particles are distributed over a fairly wide range.
However, computer modeling of light scattering by sufficiently large ice particles at the present stage of development of
computer technology can only be realized in the approximation of geometrical optics. The question of the limiting size
remains open, starting from which geometric optics begins to describe scattering properties well. In view of this, for a
qualitative study of the scattering properties of ice particles, the Mie theory was used, which describes the scattering
of light by an ideal sphere. In this work, we investigate the features of light scattering characteristics, such as intensity
and polarization as well as photometric color, by large particles of water ice with a size of about 0.7 mm. The effect
of the scattering particle size and the phase angle on the scattering properties of ice particles is studied. We determine
the minimum size of an ice spherical particle at which scattering can be described by the laws of geometric optics.
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1 Introduction

The study of polarization characteristics of light scattered by
surfaces is an important source of information on the physical
properties of these surfaces. The phase dependence of lin-
ear polarization is considered as one of the most informative
polarization characteristics. It can be used to determine the
albedo, approximate composition, particle sizes comprising
the reflecting surface, etc. To interpret the observed polar-
ization properties of scattered radiation, computer model-
ing methods are used, which allow calculating the scattering
properties of particles of almost any size. However, upon
reaching a certain size of the scattering object, sufficiently
large compared to the wavelength of light radiation, the scat-
tering can be described by simple relations of geometric
optics. But the question of this limiting size still remains
open.

Attempts to estimate the limiting size have been made
repeatedly by computer modeling of light scattering by ir-
regularly shaped particles of the largest possible size. Zubko
(2005) calculated the degree of linear polarization for icy,
organic, and silicate fractal particles up to a size of 1.5 um,
but the limiting size was not reached. Based on the model of
rough spheroids, Kolokolova et al. (2017) estimated the lim-
iting size for silicate particles, which amounted to 3.5 um.
However, based on the model of agglomerate debris particles,
Zubko et al. (2020) calculated the degree of linear polariza-
tion of silicate and carbon particles up to a size of about
5 pum. It turned out that even at such a size (which required
enormous computational resources and, apparently, is close
to the limits of modern computing technology) the degree

of linear polarization noticeably depends on the size of the
scattering particle.

In this work, we tried to go a different way, i.e., to esti-
mate this size for ice particles, taking into account the fol-
lowing feature: in the framework of geometric optics, the
wavelength is considered negligibly small compared to the
size of the scattering object. Therefore, an increase in the size
of the scattering object above the limiting size should leave
the relative characteristics of the scattered light, such as the
degree of linear polarization, practically unchanged.

Water ice particles are an integral part of many objects in
the Solar system: from the Moon and comets to the moons of
giant planets. For example, Europa is the smallest of the four
Galilean moons orbiting Jupiter that has a water-ice crust
on its surface. To study the chemical and physical properties
of Europa’s icy crust, both photopolarimetric observations
and computer modeling of light scattering are necessary.
However, accurate methods of computer modeling of light
scattering by nonspherical particles are limited by the ca-
pabilities of modern computer technology, not allowing the
calculation of scattering by a sufficiently large particle (with
a size of more than 10 um) in a reasonable time. It should
also be noted that the currently used methods for modeling
the processes of scattering by a cluster of particles or radia-
tion transfer require calculating the scattering indicatrix of a
single particle that is part of the cluster (Tishkovets, Petrova,
2020). Meanwhile, Bohren, Huffman (1986) proved that the
Mie theory can serve as a guideline in studying the scattering
properties. That is why, in the first approximation, for a qual-
itative study of the scattering characteristics of large compact
ice particles, whose sizes along three mutually perpendicular
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coordinate axes are approximately the same, the Mie theory
can be used.

The Mie theory is a rigorous mathematical and physical
theory of electromagnetic radiation scattering by homoge-
neous spherical particles, developed by Gustav Mie in 1908.
Unlike Rayleigh theory, which is applicable only to particles
whose size is much smaller than the wavelength, Mie theory
covers all possible ratios of the size of a spherical particle to
the wavelength. This theory is based on the exact solution of
Maxwell’s equation for the case of light scattering by a ho-
mogeneous spherical particle. Within the framework of the
Mie theory, due to the simplicity of the boundary conditions
on the surface of a sphere in a spherical coordinate system,
it was possible to factorize Maxwell’s equations and obtain
a rigorous solution that satisfies these equations. The Mie
theory has remained the only strictly solved problem in the
framework of light scattering for a long time and still plays an
important role in the study of light scattering by particles that
are very close in shape to spheres (such as rain drops in the
Earth’s atmosphere, sulfuric acid droplets in the atmosphere
of Venus (Petrov, Zhuzhulina, 2020a), spherical polystyrene
particles in air (Petrov, Zhuzhulina, 2020b)), in the study of
the 10-micron silicate feature of quartz particles (Petrov et
al., 2020), and in many other applications.

2 Methods of performing calculations using
the Mie theory

Methods of performing calculations using the Mie theory
have been discussed by many authors. After several decades
of research, the calculation methodology was very well de-
veloped. We should note the contribution of the creator of
the theory, Gustav Mie (Mie, 1908), as well as Infeld (1947),
Dave (1969), Lentz (1976), Wiscombe (1980), and many
others.

A good description of the Mie theory is given by van
de Hulst (1957). Despite the fact that the formulas given in
the literature are a fairly complete and accurate description
of the Mie theory, a set of these formulas is difficult for
practical use due to the redundancy of the description of
the scattered field in the so-called far zone. The far zone
is a region of space sufficiently distant from the scattering
object, which makes the radial component of the electric
and magnetic vectors negligibly small (Mishchenko, 2006).
Here we present a set of formulas necessary and sufficient
to calculate the characteristics of light scattered by a sphere,
such as intensity and polarization, in the far zone.

Let the sphere have a radius R and a refractive index
m and be illuminated by monochromatic radiation with a
wavelength A. In this case, the characteristics of the scattered
light can be calculated using the following relatively simple
relations. The intensity of the scattered light in relation to
the scattering angle 6 (the angle between the propagation
directions of the incident and scattered waves) is calculated
by the formula

1(0) = |EL(O)] + |E (). (1

The degree of linear polarization is calculated using the
following formula:
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The quantities £ and E, represent the electric field
strengths in the far zone, in the scattering plane, and in
the plane perpendicular to the scattering plane, respectively.
These quantities can be calculated using the following for-
mulas:
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Here P)(cos@) are the associated Legendre functions
P (x) for m=1 and x = cos 6 (Arfken, 1985).

One of the main advantages of the Mie theory is the
separation of variables. Only the above functions depend on
the angular quantities, and only the expansion coefficients a,,
and b, depend on the parameters of the scattering sphere.
These coefficients are calculated using the formulas

_ my (), (x) = Y (X), (mx)
m T g (mx)E (x) = En (X)W, (mx)
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Here the quantity x = # is called the size parameter,

and m is the refractive index. It is useful to note thatasm — 1,
the expansion coefficients a, and b,, tend to zero since, in the
absence of a scattering particle, the field scattered by it also
disappears. The functions ¥, (x) and &, (x) are the Riccati —
Bessel and Riccati — Hankel functions, respectively:

Un(x) = xjn(x) = \/7 Tt (%), (€))

£a() =xh () = \| 5, (). (10)

Here j,(x) and hﬁ,l) (x) are the spherical Bessel and Han-
kel functions, which can be expressed in terms of the Bessel

J,(x) and Hankel H‘(,l) (x) functions of half-integer order.
Note that the functions ¢,,(x) and &, (x) are the derivatives
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of the Riccati—Bessel and Riccati —Hankel functions with
respect to their argument.

When calculating light scattering by a sphere, the most
difficult stage is the calculation of the expansion coefficients
a, and b,. Despite the fact that the Bessel functions are
fairly well studied, for sufficiently large n, an uncertainty of
the form oo — co arises, that is, a straightforward calcula-
tion of scattering by large spheres leads to significant errors
even when using modern computers. The solution to this
problem is given in Deirmendjian et al. (1961), where the
authors proposed to calculate not the Riccati—Bessel and
Riccati —Hankel functions themselves but their logarithmic
derivatives:

1d
c, = L %n
{n dx
where £, means both the Riccati —Bessel and the Riccati —

Hankel function. Cantrell (1988) obtained the recurrence re-
lations for the quantities Cp,:

an

n 1
Cy P + TGRS (12)

Using these recurrence relations, it is easy to calculate
the expansion coefficients a, and b, and, consequently, to
calculate the scattering characteristics in the far zone even in
the case of sufficiently large spheres.

For these calculations, we used our own software imple-
mentation of the above-described relations of the Mie theory,
previously used for calculating light scattering by spheres
comparable to the wavelength (Petrov, Zhuzhulina, 2020c).
With its help it turned out to be possible to carry out calcu-
lations of the scattering properties for spheres of very large
sizes, on the order of 0.7 mm. The program was tested by
comparing calculations using our program and the program
developed by Mishchenko, Travis (1998) for calculating light
scattering by spheroids but also applicable to spheres, which
has proven to be highly accurate and reliable. The testing
showed a very good agreement of the results.

3 Results and discussion

We studied the light scattering by spherical ice particles,
varying their sizes over a sufficiently wide range from 0.01
to 700 um. Two wavelengths of the incident radiation were
considered: 450 and 650 nm. The refractive indices of ice
m = n+1i -k for these two wavelengths were taken from
Warren, Brandt (2008). The intensity and degree of linear
polarization were calculated for these two wavelengths, de-
noted as Iye and Py for the wavelength of 450 nm and
Iteq and Preq for the wavelength of 650 nm, respectively. A
characteristic of the scattered light called the “photometric
color” In(Iieq/Ine) Was also calculated.

Figures | and 2 show the maps of the scattered light
intensity in relation to the phase angle (horizontal axis) and
the size of the scattering ice particle (vertical axis) for the
wavelengths of 450 nm (Fig. 1) and 650 nm (Fig. 2).

It was shown that the photometric (Figs. | and 2) and po-
larimetric (Figs. 3 and 4) properties of spherical ice particles
whose radius exceeds 50 um are practically independent of
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Fig. 1. Map of the scattered light intensity in relation to the phase
angle (horizontal axis) and the size of the scattering ice particle
(vertical axis) for the wavelength of 450 nm.
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Fig. 2. Map of the scattered light intensity in relation to the phase
angle (horizontal axis) and the size of the scattering ice particle
(vertical axis) for the wavelength of 650 nm.

further size increase. Negative polarization at small phase
angles is exhibited by particles whose radius is in the range
from 1 to 20 um. Large particles exhibit a distinct branch
of positive polarization in the phase angle range from 60 to
120 degrees. In addition, one should expect the presence of a
negative branch of the degree of linear polarization of large
ice particles at phase angles greater than 120 degrees.
Figure 5 shows a map of the photometric color in relation
to the phase angle (horizontal axis) and the size of the scatter-
ing ice particle (vertical axis). The figure shows that spherical
ice particles exhibit near-zero photometric color for particle
sizes less than 10 um and phase angles from 0 to 90 degrees.
For particle sizes less than 10 um and phase angles from 90
to 180 degrees, the photometric color is negative. A region
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Fig. 3. Map of the degree of linear polarization of the scattered
light in relation to the phase angle (horizontal axis) and the size
of the scattering ice particle (vertical axis) for the wavelength of
450 nm.

0
P red> /o

100

1000

UL
Ly

100 |
50

|

10

L1 llHIII

R, pm

T TTTT
|

-50
0.1

T T TTTT
Ll

0.01 -100

Fig. 4. Map of the degree of linear polarization of the scattered
light in relation to the phase angle (horizontal axis) and the size
of the scattering ice particle (vertical axis) for the wavelength of
650 nm.

of predominantly positive photometric color is observed in
a rather narrow range of sizes, from 10 to 20 um. Larger
particles exhibit strong variability in photometric color.

4 Conclusions

In this work, we have studied the scattering properties of
spherical ice particles, such as the intensity and polarization
of scattered light as well as the photometric color. The Mie
theory, which describes the scattering of light by an ideal
sphere, was used for the calculations. The sizes of the stud-
ied particles ranged from 0.01 to 700 um. One of the main
conclusions of this work is that the degree of linear polar-
ization of light scattered by spherical ice particles whose
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Fig. 5. Map of the photometric color in relation to the phase angle
(horizontal axis) and the size of the scattering ice particle (vertical
axis).

radius exceeds 50 um is practically independent of further
size increase. This is because, at sufficiently large sizes of the
scattering object, its scattering can be adequately described
by the laws of geometric optics, which are independent of the
wavelength of the incident radiation. This conclusion is ex-
tremely important for computer modeling of light scattering
in general, because methods for calculating light scattering
by nonspherical particles require quite significant compu-
tational resources (both calculation time and RAM), which
grow very rapidly (almost exponentially) with increasing size
of the scattering particle. Therefore, an estimate of the size
of ice particles at which the laws of geometric optics begin to
work allows for a more accurate determination of the com-
puting power required to solve a particular light scattering
problem. It should be noted that since the scattering of light
by a sphere is much more sensitive to the size of the sphere
than the scattering by a nonspherical particle, the size of 50
um determined in this work can be considered as the upper
limit of the size of a nonspherical particle at which the laws
of geometric optics begin to work.

We have investigated the characteristic features of the de-
gree of linear polarization of light scattered by particles of
various sizes at various phase angles as well as the character-
istic features of the behavior of the photometric color. These
estimates can be useful for interpreting photometric and po-
larimetric observations of atmosphereless bodies in the Solar
system and comet atmospheres containing ice particles in or-
der to approximately calculate their physical characteristics.

References

Arfken G., 1985. Legendre Functions, Ch. 12 in Mathemati-
cal Methods for Physicists, 3rd ed. Orlando, FL: Academic
Press, pp. 637-711.

Bohren C., Huffman D., 1986. Absorption and Scattering of
Light by Small Particles. M.: Mir. (In Russ.)

Cantrell C.D., 1988. Numerical methods for the accurate
calculation of spherical Bessel functions and the location



Scattering properties of spherical ice particles

of Mie resonances. Richardson, TX: University of Texas
at Dallas.

Dave J.V., 1969. IBM J. Res. Dev., vol. 13, pp. 302-313.

Deirmendjian D., Clasen R., Viezee W., 1961. J. Opt. Soc.
Am., vol. 51, pp. 620-633.

Infeld L., 1947. Q. Appl. Math., vol. 5, pp. 113-132.

Kolokolova L., Das H.S., Dubovik O., Lapyonok T., Yang P.,
2015. Planetary and Space Science, vol. 116, pp. 30-38,
doi:10.1016/j.pss.2015.03.006.

Lentz W.J., 1976. Appl. Opt., vol. 15, pp. 668-671.

Mie G. 1908. Annalen der Physik, vol. 330, no. 3, pp. 377—
445.

Mishchenko M.I., 2006. J. Quant. Spectrosc. Radiat. Trans.,
vol. 100, pp. 268-276.

Mishchenko M., Travis L.D., 1998. J. Quant. Spectrosc. Ra-
diat. Trans., vol. 60, pp. 309-324.

Petrov D., Savushkin A., Zhuzhulina E., 2020. Research
Notes of the AAS, vol. 4, no. 9, p. 161.

Petrov D., Zhuzhulina, E., 2020a. In Romanyuk LI. et al.
(Ed.), Ground-Based Astronomy in Russia. 21st Cen-

5

tury, Proceedings of the All-Russian Conference. Nizhnii
Arkhyz: SAO RAN, pp. 320-321.

Petrov D., Zhuzhulina E., 2020b. Spectroscopy and Spectral
Analysis, vol. 40, no. 1, pp. 324-327.

Petrov D., Zhuzhulina E., 2020c. J. Quant. Spectr. Radiat.
Trans., vol. 242, article id. 106806.

Tishkovets V.P., Petrova E.V., 2020. J. Quant. Spectr.
Radiat. Trans., vol. 255, article id. 107252,
doi:10.1016/j.jgsrt.2020.107252.

van de Hulst H.C., 1957. Light Scattering by Small Particles.
Wiley, New York.

Warren S.G., Brandt R.E., 2008. J. Geophys. Res., vol. 113,
p. D14220.

Wiscombe W.J., 1980. Appl. Opt., vol. 19, pp. 1505-1509.

Zubko E., Petrov, D., Shkuratov, Y., Videen, G. 2005. Appl.
Opt., vol. 44, pp. 6479-6485.

Zubko E., Videen G., Arnold J.A., MacCall B., Wein-
berger A.J., Kim S.S., 2020. Astrophys. J., vol. 895, no. 2,
p- 110.


http://dx.doi.org/10.1016/j.pss.2015.03.006
http://dx.doi.org/10.1016/j.jqsrt.2020.107252

	Introduction
	Methods of performing calculations using the Mie theory
	Results and discussion
	Conclusions

