Influence of the scattering particle shape on the SiO2 silicate feature
Main Article Content
Abstract
Silicate dust particles are part of many astronomical objects such as comets and circumstellar disks. In a spectrum, silicates exhibit a number of characteristic silicate emission features. To study these features, Mie’s theory is usually used. This theory assumes that the scattering object is an ideal sphere. In this work, we investigated the contribution of non-spherical quartz particles (SiO2) to these features. We studied the influence of the deviation from sphericity on the 10-micron silicate feature of quartz. It is shown that the deviation from sphericity has a significant effect on both the scattered light intensity and the scattering factor Qsca, and this effect increases with increasing scattering particle size. The main peculiarities of the 10-micron silicate feature have been studied for both prolate and oblate spheroids.
Downloads
Article Details
The metadata for this submission is licensed under a Creative Commons Attribution 4.0 International License.
Copyright and publishing rights for texts published in Acta Astrophysica Taurica is retained by the authors, with first publication rights granted to the journal.Texts are free to use with proper attribution and link to the licensing (Creative Commons Attribution 4.0 International).
References
Beckwith S.V.W., Sargent A.I., Chini R.S., et al., 1990. Astron. J., vol. 99, p. 924.
Bregman J.D., Witteborn F.C., Allamandola L.J., et al., 1987. Astron. Astrophys., vol. 187, no. 1–2, pp. 616–620.
Campins H. and Ryan E., 1989. Astrophys. J., vol. 341, pp. 1059–1066.
Chornaya E., Zakharenko A.M., Zubko E.S., et al., 2020. Icarus, vol. 350, article id. 113907.
Dorschner J. and Henning T., 1995. Astron. Astrophys. Rev., vol. 6, no. 4, pp. 271–333.
FarafonovV.G., Il’in V.B., Prokop’evaM.S., Tulegenov A.R., Ustimov V.I., 2019. Optics and spectroskopy, vol. 126, no. 4, pp. 443–449. (In Russ.)
Hage J.I. and Greenberg J.M., 1990. Astrophys. J., vol. 361, pp. 251–259.
Hanner M.S., Tokunaga A.T., Golisch W.F., et al., 1987. Astron. Astrophys., vol. 187, pp. 653–660.
Hanner M.S., Newburn R.L., Gehrz R.D., et al., 1990. Astrophys. J., vol. 348, pp. 312–321.
Hanner M.S., Veeder G.J., Tokunaga A.T., 1992. Astron. J., vol. 104, pp. 386–393.
Hanner M.S., Lynch D.K., Russell R.W., 1993. Asteroids, Comets, Meteors 1993, Abstracts for the IAU Symposium 160. LPI Contribution, Houston: Lunar and Planetary Institute, vol. 810, p. 129.
Hanner M.S., Hackwell J.A., Russell R.W., et al., 1994. Icarus, vol. 112, pp. 490–495.
Hanner M.S., Gehrz R.D., Harker David E., et al., 1997. Earth Moon and Planets, vol. 79, no. 1, pp. 247–264.
Hanner M.S. and Brooke T.Y., 1998. Astron. J., vol. 502, pp. 871–882.
Hanner M.S. and Bradley J.P., 2004. In Festou M.C. et al. (Eds), Comets II. Tucson: University of Arizona Press, p. 555.
Hao L., Spoon H.W.W., Sloan G.C., et al., 2005. Astrophys. J., vol. 625, no. 2, pp. L75–L78.
Hayward T.L., Hanner M.S., Sekanina Z., 2000. Astrophys. J., vol. 538, pp. 428–455.
Henning T. and Meeus G., 2009. In Garcia P.J.V. (Ed.), Physical Processes in Circumstellar Disks around Young Stars. Chicago: Univ. Chicago Press, pp. 114–148.
Kearsley A.T., Borg J., Graham G.A., et al., 2008. Meteoritics Plan. Sci., vol. 43, no. 1, pp. 41–73.
Lee J.C., Kriss G.A., Chakravorty S., et al., 2013. Mon. Not. Roy. Astron. Soc., vol. 430, no. 4, pp. 2650–2679.
Lynch D.K., Russell R.W., Hackwell J.A., et al., 1992. Icarus, vol. 100, pp. 197–202.
Malfait K., Waelkens C., Waters L.B.F.M., et al., 1998. Astron. Astrophys., vol. 332, pp. L25–L28.
Mie G., 1908. Annalen der Physik, vol. 330, no. 3, pp. 377–445.
Mishchenko M.I., 1991. J. Opt. Soc. Am. A., vol. 8, pp. 871–882.
Mishchenko M.I., 1993. Appl. Opt., vol. 32, pp. 4652–4666.
Mishchenko M.I., Travis L.D., 1994. Opt. Commun., vol. 109, pp. 16–21.
Mishchenko M.I., Travis L.D., Mackowski D.W., 1996. J. Quant. Spectrosc. Radiat. Transfer, vol. 55, pp. 535–575.
Mischenko M.I., Hovenier J.W., Travis L.D., 2000. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press.
Petrov D., Synelnyk E., Shkuratov Y., et al., 2006. J. Quant. Spectrosc. Radiat. Transf., vol. 102, no. 1, pp. 85–110.
Petrov D., Savushkin A., Zhuzhulina E., 2020. Research Notes of the AAS, vol. 4, no. 9, p. 161.
Popova S., Tolstykh T., Vorobev V., 1972. Optics and spectroskopy, vol. 33, pp. 444–445. (In Russ.)
Potter A.E. Jr. and Morgan T.H., 1982. Lunar and Planetary Science Conference Proceedings, vol. 12, pp. 703–713.
Sargent B.A., Forrest W.J., Tayrien C.,et al.,2009. Astrophys. J., vol. 690, pp. 1193–1207.
Siebenmorgen R., Haas M., Krugel E., et al., 2005. Astrophys. J., vol. 436, p. L5.
Skrutskie M.F., Dutkevitch D., Strom S.E., et al., 1990. Astron. J., vol. 99, pp. 1187–1195.
Strom K.M., Strom S.E., Edwards S., et al., 1989. Astron. J., vol. 97, p. 1451.
Waelkens C., Malfait K., Waters L.B.F.M., 1997. Astrophys. Space Sci., vol. 255, no. 1/2, pp. 25–33.
Weintraub D.A., Sandell G., Duncan W.D., 1989. Astrophys. J. Lett., vol. 340, p. L69.
Wielaard D.J., Mishchenko M.I., Macke A., Carlson B.E., 1997. Appl. Opt., vol. 36, pp. 4305–4313.
Wooden D.H., Harker D.E., Woodward C.E., et al., 1999. Astrophys. J., vol. 517, pp. 1034–1058.
