Main Article Content

Valentina Abramenko
Olga Kutsenko

Abstract

Using the magnetic field data obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), an investigation of magnetic power spectra in the undisturbed solar photosphere was performed. The results are as follows. 1) To get a reliable estimate of a magnetic power spectrum from the uniformly distributed quiet-sun magnetic flux, a sample pattern of no less than 300 pixels length should be adopted. With smaller patterns, energy on all observable scales might be overestimated. 2) For patterns of different magnetic intensity (e.g., a coronal hole, a quiet-sun area, an area of supergranulation), the magnetic power spectra in a range of (2.5-10) Mm exhibit very close spectral indices of about -1. The observed spectrum is more shallow than the Kolmogorov-type spectrum (with a slope of -5/3) and it differs from steep spectra of active regions. Such a shallow spectrum cannot be explained by the only direct Kolmogorov’s cascade, but it can imply a small-scale turbulent dynamo action in a wide range of scales: from tens of megameters down to at least 2.5 Mm. On smaller scales, the HMI/SDO data do not allow us to reliably derive the shape of the spectrum. 3) Data make it possible to conclude that a uniform mechanism of the small-scale turbulent dynamo is at work all over the solar surface outside active regions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abramenko V., Kutsenko O. , 2020. Acta Astrophysica Taurica, vol. 1, no. 1, pp. 1–5. DOI: 10.31059/aat.vol1.iss1.pp1-5
Section
Research articles

References

Abramenko V.I., 2005. Astrophys. J., vol. 629, p. 1141.
Abramenko V.I., 2016. Turbulent and multi-fractal nature of solar magnetism (Dr. Sci. thesis). Nauchny. (In Russ.)
Abramenko V., Yurchyshyn V., Wang H., Goode P.R., 2001. Solar Phys., vol. 201, p. 225.
Abramenko V.I., Yurchyshyn V.B., 2010. Astrophys. J., vol. 722, p. 122.
Dikpati M., Gilman P.A., 2006. Astrophys. J., vol. 649, p. 498.
Hewett R.J., Gallagher P.T., McAteer R.T.J., et al., 2008. Solar Phys., vol. 248, p. 311.
Hofmeister S.J., Utz D., Heinemann S.G., Veronig A., Temmer T., 2019. Astron Astrophys., vol. 629, p. 22.
Ishikawa R., Tsuneta S., 2009. Astron Astrophys., vol. 495, p. 607.
Jin C.L., Wang J.X., Zhao H., 2011. Astrophys. J., vol. 731, p. 37.
Karak B.B., Brandenburg A., 2016. Astrophys. J., vol. 816, p. 28.
Katsukawa Y., Orozco Suarez D., 2012. Astrophys. J., vol. 758, p. 139.
Kiyani K.H., Osman K.T., Chapman S.C., 2015. Phil. Trans. R. Soc. A, vol. 373, id. 20140155, doi:10.1098/rsta.2014.0155.
Kolmogorov A.N., 1941. Doklady Akad. nauk, vol. 30, p. 301. (in Russ.)
Stenflo J.O., 2012. Astron. Astrophys., vol. 547, p. A93.
Toriumi S., Wang H., 2019. Living Rev. Sol. Phys., vol. 16, no. 1, p. 3.
Upton L., Hathaway D., 2014. Astrophys. J., vol. 780, p. 5.
Wang Y.-M., Nash A.G., Sheeley N.R., 1989. Jr. Science, vol. 245, no. 4919, pp. 712-718.